设集合,若
,则
的值可以是( )
A. B.
C.
D.
难度: 简单查看答案及解析
第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为,且
,若在大正方形内随机取一点,则该点取自小正方形区域的概率为( )
A. B.
C. D.
难度: 中等查看答案及解析
已知为虚数单位,
为实数,复数
在复平面内对应的点为
,则“
”是“点
在第四象限”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
难度: 简单查看答案及解析
已知奇函数,当
时单调递增,且
,若
,则
的取值范围为( )
A. B.
C. D.
难度: 中等查看答案及解析
已知,点
为斜边
的中点,
,
,
,则
等于( )
A.-14 B.-9 C.9 D.14
难度: 中等查看答案及解析
执行如图所示的程序框图,输出的值为
A. B.
C. D.
难度: 中等查看答案及解析
学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到,
,
三地进行社会调查,若选出的同学中男女均有,则不同安排方法有( )
A.70种 B.140种 C.420种 D.840种
难度: 简单查看答案及解析
将函数的图象向左平移
个单位后得到函数
的图象,若函数
为偶函数,则函数
在
的值域为( )
A. B.
C.
D.
难度: 中等查看答案及解析
在棱长为1的正方体中,点
在线段
上运动,则下列命题错误的是 ( )
A.异面直线和
所成的角为定值 B.直线
和平面
平行
C.三棱锥的体积为定值 D.直线
和平面
所成的角为定值
难度: 中等查看答案及解析
将函数(
为自然对数的底数)的图象绕坐标原点
顺时针旋转角
后第一次与
轴相切,则角
满足的条件是( )
A. B.
C.
D.
难度: 中等查看答案及解析
已知双曲线的左,右焦点分别为
,
,点
为双曲线右支上一点,线段
交左支于点
.若
,且
,则该双曲线的离心率为( )
A. B.
C.
D.
难度: 困难查看答案及解析
已知函数,若函数
的所有零点依次记为
,且
,则
=( )
A. B.
C.
D.
难度: 困难查看答案及解析
已知等差数列前
项和为
,
,数列
的前
项和为
,
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)若数列满足
,
,求
的值
难度: 中等查看答案及解析
在四边形中,
,
,
,
,
,
是
上的点,
,
为
的中点.将
沿
折起到
的位置,使得
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的正弦值.
难度: 中等查看答案及解析
随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
①求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为X,求X的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
难度: 中等查看答案及解析
如图,已知椭圆的左、右顶点为
,
,上、下顶点为
,
,记四边形
的内切圆为
.
(1)求圆的标准方程;
(2)已知圆的一条不与坐标轴平行的切线
交椭圆
于P,M两点.
(i)求证:;
(ii)试探究是否为定值.
难度: 困难查看答案及解析
设函数.
(1)若函数在区间
(
为自然对数的底数)上有唯一的零点,求实数
的取值范围;
(2)若在(
为自然对数的底数)上存在一点
,使得
成立,求实数
的取值范围.
难度: 困难查看答案及解析
在直角坐标系中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
为曲线
上的动点,点
在射线
上,且满足
.
(Ⅰ)求点的轨迹
的直角坐标方程;
(Ⅱ)设与
轴交于点
,过点
且倾斜角为
的直线
与
相交于
两点,求
的值.
难度: 中等查看答案及解析
已知函数.
(1)当时,求不等式
的解集;
(2)若不等式恒成立,求实数
的取值范围.
难度: 中等查看答案及解析