↑ 收起筛选 ↑
试卷详情
本卷共 22 题,其中:
单选题 12 题,填空题 4 题,解答题 6 题
简单题 7 题,中等难度 9 题,困难题 6 题。总体难度: 简单
单选题 共 12 题
  1. 已知集合,则(   )

    A.    B.    C.    D.

    难度: 简单查看答案及解析

  2. ”的否定是(    )

    A.    B.

    C.    D.

    难度: 简单查看答案及解析

  3. ”的否定是(    )

    A.    B.

    C.    D.

    【答案】D

    【解析】“”的否定是,故选D.

    【题型】单选题
    【结束】
    3

    ”是“方程表示焦点在轴上的椭圆”的(    )

    A. 充分不必要条件   B. 必要不充分条件

    C. 充要条件   D. 既不充分也不必要条件

    难度: 简单查看答案及解析

  4. ”是“方程表示焦点在轴上的椭圆”的(    )

    A. 充分不必要条件   B. 必要不充分条件

    C. 充要条件   D. 既不充分也不必要条件

    【答案】A

    【解析】 若方程表示焦点在轴上的椭圆,则,所以

    所以是方程表示焦点在轴上的椭圆的充分不必要条件,故选A.

    【题型】单选题
    【结束】
    4

    曲线与直线与直线所围成的封闭图形的面积为(   )

    A.    B.    C.    D.

    难度: 中等查看答案及解析

  5. 曲线与直线与直线所围成的封闭图形的面积为(   )

    A.    B.    C.    D.

    【答案】D

    【解析】联立曲线与两条直线的方程组成的方程组可得三个交点分别为,结合图形可得封闭图形的面积为,应选答案D。

    【题型】单选题
    【结束】
    5

    设双曲线的离心率是,则其渐近线的方程为(    )

    A.    B.    C.    D.

    难度: 简单查看答案及解析

  6. 设双曲线的离心率是,则其渐近线的方程为(    )

    A.    B.    C.    D.

    【答案】D

    【解析】双曲线的离心率是

    可得,即,可得

    则其渐近线的方程为

    故选

    【题型】单选题
    【结束】
    6

    设函数在区间上单调递减,则实数的取值范围是(   )

    A.    B.    C.    D.

    难度: 中等查看答案及解析

  7. 设函数在区间上单调递减,则实数的取值范围是(   )

    A.    B.    C.    D.

    【答案】C

    【解析】∵

    ∴函数的单调减区间为

    又函数在区间上单调递减,

    ,解得

    ∴实数的取值范围是.选C.

    点睛:已知函数在区间上的单调性求参数的方法

    (1)利用导数求解,转化为导函数在该区间上大于等于零(或小于等于零)恒成立的问题求解,一般通过分离参数化为求函数的最值的问题.

    (2)先求出已知函数的单调区间,然后将问题转化为所给的区间是函数相应的单调区间的子集的问题处理.

    【题型】单选题
    【结束】
    7

    ,函数的图象向右平移个单位长度后与原图象重合,则的最小值是(   )

    A.    B.    C.    D.

    难度: 简单查看答案及解析

  8. ,函数的图象向右平移个单位长度后与原图象重合,则的最小值是(   )

    A.    B.    C.    D.

    【答案】A

    【解析】函数的图象向右平移个单位长度后所得图象对应的函数解析式为

    由题意得

    的最小值是.选A.

    【题型】单选题
    【结束】
    8

    公差不为0的等差数列中,已知,其前项和的最大值为(   )

    A. 25   B. 26   C. 27   D. 28

    难度: 中等查看答案及解析

  9. 公差不为0的等差数列中,已知,其前项和的最大值为(   )

    A. 25   B. 26   C. 27   D. 28

    【答案】B

    【解析】设等差数列的公差为,

    整理得

    ∴当时,

    最大,且.选B.

    点睛:求等差数列前n项和最值的常用方法:

    ①利用等差数列的单调性, 求出其正负转折项,便可求得和的最值;

    ②将等差数列的前n项和 (A、B为常数)看作关于n的二次函数,根据二次函数的性质求最值.

    【题型】单选题
    【结束】
    9

    如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(   )

    A.    B.    C. 90   D. 81

    难度: 中等查看答案及解析

  10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(   )

    A.    B.    C. 90   D. 81

    【答案】B

    【解析】由三视图可得,该几何体是一个以俯视图为底面的平行六面体(四棱柱).

    其底面的面积为

    前后两个面的面积为

    左右两个面的面积为

    故棱柱的表面积为.选B.

    【题型】单选题
    【结束】
    10

    已知实数满足约束条件,如果目标函数的最大值为,则实数的值为(   )

    A. 3   B.    C. 3或   D. 3或

    难度: 困难查看答案及解析

  11. 已知实数满足约束条件,如果目标函数的最大值为,则实数的值为(   )

    A. 3   B.    C. 3或   D. 3或

    【答案】D

    【解析】先画出线性约束条件所表示的可行域,目标函数化为,目标函数的最大值只需直线的截距最大,

    (1) ,即时,最优解为,符合题意;

    (2) ,即时,最优解为,不符舍去;

    (3),即时,最优解为,符合;

    (4),即时,最优解为,不符舍去;

    综上:实数的值为3或,选D.

    【题型】单选题
    【结束】
    11

    中, ,若一个椭圆经过两点,它的一个焦点为点,另一个焦点在边上,则这个椭圆的离心率为(    )

    A.    B.    C.    D.

    难度: 中等查看答案及解析

  12. 中, ,若一个椭圆经过两点,它的一个焦点为点,另一个焦点在边上,则这个椭圆的离心率为(    )

    A.    B.    C.    D.

    【答案】C

    【解析】

    设另一焦点为

    中,

    中焦距

    故选

    点睛:本题主要考查了椭圆的简单性质。设另一焦点为,则可在中,根据勾股定理求得,进而根据椭圆的定义知,求得的值,再利用求得,最后在中根据勾股定理求得,得到焦距,进一步求得离心率。

    【题型】单选题
    【结束】
    12

    已知函数,若成立,则的最小值为(   )

    A.    B.    C.    D.

    难度: 中等查看答案及解析

填空题 共 4 题
  1. 已知函数,若成立,则的最小值为(   )

    A.    B.    C.    D.

    【答案】A

    【解析】设,则:

    ,则

    导函数单调递增,且

    则函数在区间上单调递减,在区间上单调递增,

    结合函数的单调性有:

    的最小值为.

    本题选择A选项.

    【题型】单选题
    【结束】
    13

    已知向量的夹角为120°,,则__________.

    难度: 简单查看答案及解析

  2. 已知向量的夹角为120°,,则__________.

    【答案】

    【解析】由

    答案:

    【题型】填空题
    【结束】
    14

    函数在区间上的值域为__________.

    难度: 中等查看答案及解析

  3. 函数在区间上的值域为__________.

    【答案】

    【解析】∵

    ∴函数在区间上单调递增,

    ,即

    ∴函数在区间上的值域为

    答案:

    【题型】填空题
    【结束】
    15

    观察下列各式: ,则的末四位数字为____________.

    难度: 简单查看答案及解析

  4. 观察下列各式: ,则的末四位数字为____________.

    【答案】

    【解析】

    观察可以看出这些幂的最后位是以为周期变化的,

    的末四位数字与的后四位数相同

    故答案为

    【题型】填空题
    【结束】
    16

    奇函数定义域为,其导函数是.当时,有,则关于的不等式的解集为__________.

    难度: 困难查看答案及解析

解答题 共 6 题
  1. 奇函数定义域为,其导函数是.当时,有,则关于的不等式的解集为__________.

    【答案】

    【解析】令

    由条件得当时,

    ∴函数上单调递减.

    又函数为偶函数,

    ∴函数上单调递增.

    ①当时, ,不等式可化为

    ②当时, ,,不等式可化为

    综上可得不等式的解集为

    答案:

    点睛:对于给出含有导函数的不等式来解不等式或比较大小的问题,往往采用构造新函数的方法,然后判断出新函数的单调性,再结合单调性进行解题.在构造新函数时,要注意观察所给的不等式的特征,根据乘积、商的导数的求导法则进行构造,并根据条件中所给出的不等式判断出所构造的函数的单调性.

    【题型】填空题
    【结束】
    17

    等比数列的各项均为正数,且.

    (1)求数列的通项公式;(2)设,求数列的前项和.

    难度: 中等查看答案及解析

  2. 等比数列的各项均为正数,且.

    (1)求数列的通项公式;(2)设,求数列的前项和.

    【答案】(1);(2)

    【解析】试题分析:(1)已知数列是等比数列,因此把已知条件用首项和公比表示并解出,然后可写出通项公式;(2)计算出是等差数列的前项和, ,因此变成两项的和,即数列可用裂项相消法求和得出结论.

    (1)设数列{an}的公比为,由所以

    有条件可知,故

    ,所以

    故数列{an}的通项式为

    (2)==.

    所以数列的前n项和为

    考点:等比数列的通项公式,等差数列的前项和,裂项相消法求和.

    【题型】解答题
    【结束】
    18

    已知函数.

    (Ⅰ)求的单调区间;

    (Ⅱ)求在区间上的最小值.

    难度: 困难查看答案及解析

  3. 已知函数.

    (Ⅰ)求的单调区间;

    (Ⅱ)求在区间上的最小值.

    【答案】(Ⅰ);(Ⅱ).

    【解析】(Ⅰ).

    ,得.

    的情况如上:

    所以,的单调递减区间是,单调递增区间是.

    (Ⅱ)当,即时,函数上单调递增,

    所以在区间上的最小值为.

    ,即时,

    由(Ⅰ)知上单调递减,在上单调递增,

    所以在区间上的最小值为.

    ,即时,函数上单调递减,

    所以在区间上的最小值为.

    综上,当时,的最小值为

    时,的最小值为

    时,的最小值为.

    【题型】解答题
    【结束】
    19

    已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

    (1)求的方程;

    (2)若点上,过的两弦,若,求证: 直线过定点.

    难度: 困难查看答案及解析

  4. 已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

    (1)求的方程;

    (2)若点上,过的两弦,若,求证: 直线过定点.

    【答案】(1);(2)证明见解析.

    【解析】试题分析:(1)当焦点在轴时,设的方程为,当焦点在轴时,设的方程为,分别代入点,求得的值,即可得到抛物线的方程;(2)因为点上,所以曲线

    的方程为,设点,用直线与曲线方程联立,利用韦达定理整理得到,即可得到,判定直线过定点.

    (1)当焦点在轴时,设的方程为,代人点,即.当焦点在轴时,设的方程为,代人点,即

    综上可知: 的方程为.

    (2)因为点上,所以曲线的方程为.

    设点

    直线,显然存在,联立方程有: .,

    .

    直线直线过定点.

    考点:抛物线的标准方程;直线过定点问题的判定.

    【方法点晴】本题主要考查了直线与圆锥曲线问题,其中解答中涉及到抛物线的标准方程及其简单的几何性质,直线与圆锥曲线的位置关系的应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中把直线的方程与圆锥曲线方程联立,利用根与系数的关系,及韦达定理是解答的关键,试题有一定的难度,属于中档试题.

    【题型】解答题
    【结束】
    20

    中, 所对的边分别为,且.

    (1)求角的大小;

    (2)若的中点,求的长.

    难度: 中等查看答案及解析

  5. 中, 所对的边分别为,且.

    (1)求角的大小;

    (2)若的中点,求的长.

    【答案】(1);(2).

    【解析】试题分析:(1)由已知,利用正弦定理可得a2=b2+c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
    (2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.

    (1)因为asin A=(b-c)sin B+(c-b)·sin C,

    由正弦定理得a2=(b-c)b+(c-b)c,  

    整理得a2=b2+c2-2bc,        

    由余弦定理得cos A=, 

    因为A∈(0,π),所以A=.          

    (2)由cos B=,得sin B=

    所以cos C=cos[π-(A+B)]=-cos(A+B)=-=-

    由正弦定理得b==2,    

    所以CD=AC=1,                  

    在△BCD中,由余弦定理得BD2=()2+12-2×1××=13,

    所以BD=.

    【题型】解答题
    【结束】
    21

    已知函数处的切线经过点

    (1)讨论函数的单调性;

    (2)若不等式恒成立,求实数的取值范围.

    难度: 困难查看答案及解析

  6. 已知函数处的切线经过点

    (1)讨论函数的单调性;

    (2)若不等式恒成立,求实数的取值范围.

    【答案】(1)单调递减;(2)

    【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点,求出函数的解析式; (2)由已知不等式分离出,得,令,求导得出 上为减函数,再求出的最小值,从而得出的范围.

    试题解析:(1)

      设切点为

    代入

      ∴

    单调递减

    (2)恒成立

    单调递减

    恒大于0

    点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求的最小值,直接求的最小值比较复杂,所以先令,求出在 上的单调性,再求出的最小值,得到的范围.

    【题型】解答题
    【结束】
    22

    已知是椭圆的两个焦点, 为坐标原点,圆是以为直径的圆,一直线与圆相切并与椭圆交于不同的两点.

    (1)求关系式;

    (2)若,求直线的方程;

    (3)当,且满足时,求面积的取值范围.

    难度: 困难查看答案及解析